来源:自学PHP网 时间:2020-10-22 09:47 作者:小飞侠 阅读:次
[导读] OpenCV利用python来实现图像的直方图均衡化...
今天带来OpenCV利用python来实现图像的直方图均衡化教程详解
1.直方图 直方图: (1) 图像中不同像素等级出现的次数 (2) 图像中具有不同等级的像素关于总像素数目的比值。 我们使用
-img: 图像
import cv2 import numpy as np def ImageHist(image, type): color = (255, 255,255) windowName = 'Gray' if type == 1: #判断通道颜色类型 B-G-R color = (255, 0, 0) windowName = 'B hist' elif type == 2: color = (0,255,0) windowName = 'G hist' else: color = (0,0,255) # 得到直方图 hist = cv2.calcHist([image],[0],None,[256],[0,255]) # 得到最大值和最小值 minV,maxV,minL,maxL = cv2.minMaxLoc(hist) histImg = np.zeros([256,256,3],np.uint8) #直方图归一化 for h in range(256): interNormal = int(hist[h] / maxV * 256) cv2.line(histImg, (h, 256), (h, 256 - interNormal), color) cv2.imshow(windowName, histImg) return histImg img = cv2.imread('img.jpg', 1) channels = cv2.split(img) # R-G-B for i in range(3): ImageHist(channels[i], 1 + i) cv2.waitKey(0) 2.直方图均衡化 灰色图像直方图均衡化 这里我们直接使用 import cv2 import numpy as np img = cv2.imread('img.jpg', 1) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) dat = cv2.equalizeHist(gray) cv2.imshow('gray', gray)a cv2.imshow('dat', dat) cv2.waitKey(0) 原图像: 直方图均衡化后的图像: 彩色图像直方图均衡化 彩色图像有3个通道,直方图是针对单通道上的像素统计,所以使用 import cv2 import numpy as np img = cv2.imread('img.jpg', 1) cv2.imshow('img', img) (b, g, r) = cv2.split(img) bH = cv2.equalizeHist(b) gH = cv2.equalizeHist(g) rH = cv2.equalizeHist(r) dat = cv2.merge((bH, gH, rH)) cv2.imshow('dat', dat) cv2.waitKey(0)
原图像: 直方图均衡化之后的图像: 3.源代码实现直方图均衡化 下面我们用源代码来实现直方图 横坐标为像素等级,纵坐标为出现的概率 import cv2 import numpy as np import matplotlib.pyplot as plt img = cv2.imread('img.jpg', 1) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) count = np.zeros(256, np.float) for i in range(img.shape[0]): for j in range(img.shape[1]): count[int(gray[i, j])] += 1 # 统计该像素出现的次数 count = count / (img.shape[0] * img.shape[1]) # 得到概率 x = np.linspace(0,255,256) plt.bar(x, count,color = 'b') plt.show() # 计算累计概率 for i in range(1,256): count[i] += count[i - 1] # 映射 map1 = count * 255 for i in range(img.shape[0]): for j in range(img.shape[1]): p = gray[i, j] gray[i, j] = map1[p] cv2.imshow('gray', gray) cv2.waitKey(0) 直方图: 直方图均衡化后的图像: 彩色直方图源码 import cv2 import numpy as np import matplotlib.pyplot as plt img = cv2.imread('img.jpg', 1) # R-G-B三种染色直方图 countb = np.zeros(256, np.float32) countg = np.zeros(256, np.float32) countr = np.zeros(256, np.float32) for i in range(img.shape[0]): for j in range(img.shape[1]): (b,g,r) = img[i,j] b = int(b) g = int(g) r = int(r) countb[b] += 1 # 统计该像素出现的次数 countg[g] += 1 countr[r] += 1 countb = countb / (img.shape[0] * img.shape[1]) # 得到概率 countg = countg / (img.shape[0] * img.shape[1]) countr = countr / (img.shape[0] * img.shape[1]) x = np.linspace(0,255,256) plt.figure() plt.bar(x, countb,color = 'b') plt.figure() plt.bar(x, countg,color = 'g') plt.figure() plt.bar(x, countr,color = 'r') plt.show() # 计算直方图累计概率 for i in range(1,256): countb[i] += countb[i - 1] countg[i] += countg[i - 1] countr[i] += countr[i - 1] #映射表 mapb = countb * 255 mapg = countg * 255 mapr = countr * 255 dat = np.zeros(img.shape, np.uint8) for i in range(img.shape[0]): for j in range(img.shape[1]): (b,g,r) = img[i, j] dat[i, j] = (mapb[b],mapg[g],mapr[r]) cv2.imshow('dat', dat) cv2.waitKey(0) R-G-B 3 种颜色通道的直方图如下: 图像均衡化之后的结果: 到此这篇关于OpenCV利用python来实现图像的直方图均衡化的文章就介绍到这了,更多相关OpenCV 直方图均衡化内容请搜索自学php网以前的文章或继续浏览下面的相关文章希望大家以后多多支持自学php网! 以上就是关于OpenCV利用python来实现图像的直方图均衡化全部内容,感谢大家支持自学php网。 |
自学PHP网专注网站建设学习,PHP程序学习,平面设计学习,以及操作系统学习
京ICP备14009008号-1@版权所有www.zixuephp.com
网站声明:本站所有视频,教程都由网友上传,站长收集和分享给大家学习使用,如由牵扯版权问题请联系站长邮箱904561283@qq.com