/* Copyright (c) 2016, Mapbox Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies. THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /** * @class EarCut */ PIXI.EarCut = {}; PIXI.EarCut.Triangulate = function (data, holeIndices, dim) { dim = dim || 2; var hasHoles = holeIndices && holeIndices.length, outerLen = hasHoles ? holeIndices[0] * dim : data.length, outerNode = PIXI.EarCut.linkedList(data, 0, outerLen, dim, true), triangles = []; if (!outerNode) return triangles; var minX, minY, maxX, maxY, x, y, size; if (hasHoles) outerNode = PIXI.EarCut.eliminateHoles(data, holeIndices, outerNode, dim); // if the shape is not too simple, we'll use z-order curve hash later; calculate polygon bbox if (data.length > 80 * dim) { minX = maxX = data[0]; minY = maxY = data[1]; for (var i = dim; i < outerLen; i += dim) { x = data[i]; y = data[i + 1]; if (x < minX) minX = x; if (y < minY) minY = y; if (x > maxX) maxX = x; if (y > maxY) maxY = y; } // minX, minY and size are later used to transform coords into integers for z-order calculation size = Math.max(maxX - minX, maxY - minY); } PIXI.EarCut.earcutLinked(outerNode, triangles, dim, minX, minY, size); return triangles; } // create a circular doubly linked list from polygon points in the specified winding order PIXI.EarCut.linkedList = function (data, start, end, dim, clockwise) { var sum = 0, i, j, last; // calculate original winding order of a polygon ring for (i = start, j = end - dim; i < end; i += dim) { sum += (data[j] - data[i]) * (data[i + 1] + data[j + 1]); j = i; } // link points into circular doubly-linked list in the specified winding order if (clockwise === (sum > 0)) { for (i = start; i < end; i += dim) last = PIXI.EarCut.insertNode(i, data[i], data[i + 1], last); } else { for (i = end - dim; i >= start; i -= dim) last = PIXI.EarCut.insertNode(i, data[i], data[i + 1], last); } return last; } // eliminate colinear or duplicate points PIXI.EarCut.filterPoints = function (start, end) { if (!start) return start; if (!end) end = start; var p = start, again; do { again = false; if (!p.steiner && (PIXI.EarCut.equals(p, p.next) || PIXI.EarCut.area(p.prev, p, p.next) === 0)) { PIXI.EarCut.removeNode(p); p = end = p.prev; if (p === p.next) return null; again = true; } else { p = p.next; } } while (again || p !== end); return end; } // main ear slicing loop which triangulates a polygon (given as a linked list) PIXI.EarCut.earcutLinked = function (ear, triangles, dim, minX, minY, size, pass) { if (!ear) return; // interlink polygon nodes in z-order if (!pass && size) PIXI.EarCut.indexCurve(ear, minX, minY, size); var stop = ear, prev, next; // iterate through ears, slicing them one by one while (ear.prev !== ear.next) { prev = ear.prev; next = ear.next; if (size ? PIXI.EarCut.isEarHashed(ear, minX, minY, size) : PIXI.EarCut.isEar(ear)) { // cut off the triangle triangles.push(prev.i / dim); triangles.push(ear.i / dim); triangles.push(next.i / dim); PIXI.EarCut.removeNode(ear); // skipping the next vertice leads to less sliver triangles ear = next.next; stop = next.next; continue; } ear = next; // if we looped through the whole remaining polygon and can't find any more ears if (ear === stop) { // try filtering points and slicing again if (!pass) { PIXI.EarCut.earcutLinked(PIXI.EarCut.filterPoints(ear), triangles, dim, minX, minY, size, 1); // if this didn't work, try curing all small self-intersections locally } else if (pass === 1) { ear = PIXI.EarCut.cureLocalIntersections(ear, triangles, dim); PIXI.EarCut.earcutLinked(ear, triangles, dim, minX, minY, size, 2); // as a last resort, try splitting the remaining polygon into two } else if (pass === 2) { PIXI.EarCut.splitEarcut(ear, triangles, dim, minX, minY, size); } break; } } } // check whether a polygon node forms a valid ear with adjacent nodes PIXI.EarCut.isEar = function (ear) { var a = ear.prev, b = ear, c = ear.next; if (PIXI.EarCut.area(a, b, c) >= 0) return false; // reflex, can't be an ear // now make sure we don't have other points inside the potential ear var p = ear.next.next; while (p !== ear.prev) { if (PIXI.EarCut.pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y) && PIXI.EarCut.area(p.prev, p, p.next) >= 0) return false; p = p.next; } return true; } PIXI.EarCut.isEarHashed = function (ear, minX, minY, size) { var a = ear.prev, b = ear, c = ear.next; if (PIXI.EarCut.area(a, b, c) >= 0) return false; // reflex, can't be an ear // triangle bbox; min & max are calculated like this for speed var minTX = a.x < b.x ? (a.x < c.x ? a.x : c.x) : (b.x < c.x ? b.x : c.x), minTY = a.y < b.y ? (a.y < c.y ? a.y : c.y) : (b.y < c.y ? b.y : c.y), maxTX = a.x > b.x ? (a.x > c.x ? a.x : c.x) : (b.x > c.x ? b.x : c.x), maxTY = a.y > b.y ? (a.y > c.y ? a.y : c.y) : (b.y > c.y ? b.y : c.y); // z-order range for the current triangle bbox; var minZ = PIXI.EarCut.zOrder(minTX, minTY, minX, minY, size), maxZ = PIXI.EarCut.zOrder(maxTX, maxTY, minX, minY, size); // first look for points inside the triangle in increasing z-order var p = ear.nextZ; while (p && p.z <= maxZ) { if (p !== ear.prev && p !== ear.next && PIXI.EarCut.pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y) && PIXI.EarCut.area(p.prev, p, p.next) >= 0) return false; p = p.nextZ; } // then look for points in decreasing z-order p = ear.prevZ; while (p && p.z >= minZ) { if (p !== ear.prev && p !== ear.next && PIXI.EarCut.pointInTriangle(a.x, a.y, b.x, b.y, c.x, c.y, p.x, p.y) && PIXI.EarCut.area(p.prev, p, p.next) >= 0) return false; p = p.prevZ; } return true; } // go through all polygon nodes and cure small local self-intersections PIXI.EarCut.cureLocalIntersections = function (start, triangles, dim) { var p = start; do { var a = p.prev, b = p.next.next; // a self-intersection where edge (v[i-1],v[i]) intersects (v[i+1],v[i+2]) if (PIXI.EarCut.intersects(a, p, p.next, b) && PIXI.EarCut.locallyInside(a, b) && PIXI.EarCut.locallyInside(b, a)) { triangles.push(a.i / dim); triangles.push(p.i / dim); triangles.push(b.i / dim); // remove two nodes involved PIXI.EarCut.removeNode(p); PIXI.EarCut.removeNode(p.next); p = start = b; } p = p.next; } while (p !== start); return p; } // try splitting polygon into two and triangulate them independently PIXI.EarCut.splitEarcut = function (start, triangles, dim, minX, minY, size) { // look for a valid diagonal that divides the polygon into two var a = start; do { var b = a.next.next; while (b !== a.prev) { if (a.i !== b.i && PIXI.EarCut.isValidDiagonal(a, b)) { // split the polygon in two by the diagonal var c = PIXI.EarCut.splitPolygon(a, b); // filter colinear points around the cuts a = PIXI.EarCut.filterPoints(a, a.next); c = PIXI.EarCut.filterPoints(c, c.next); // run earcut on each half PIXI.EarCut.earcutLinked(a, triangles, dim, minX, minY, size); PIXI.EarCut.earcutLinked(c, triangles, dim, minX, minY, size); return; } b = b.next; } a = a.next; } while (a !== start); } // link every hole into the outer loop, producing a single-ring polygon without holes PIXI.EarCut.eliminateHoles = function (data, holeIndices, outerNode, dim) { var queue = [], i, len, start, end, list; for (i = 0, len = holeIndices.length; i < len; i++) { start = holeIndices[i] * dim; end = i < len - 1 ? holeIndices[i + 1] * dim : data.length; list = PIXI.EarCut.linkedList(data, start, end, dim, false); if (list === list.next) list.steiner = true; queue.push(PIXI.EarCut.getLeftmost(list)); } queue.sort(compareX); // process holes from left to right for (i = 0; i < queue.length; i++) { PIXI.EarCut.eliminateHole(queue[i], outerNode); outerNode = PIXI.EarCut.filterPoints(outerNode, outerNode.next); } return outerNode; } PIXI.EarCut.compareX = function (a, b) { return a.x - b.x; } // find a bridge between vertices that connects hole with an outer ring and and link it PIXI.EarCut.eliminateHole = function (hole, outerNode) { outerNode = PIXI.EarCut.findHoleBridge(hole, outerNode); if (outerNode) { var b = PIXI.EarCut.splitPolygon(outerNode, hole); PIXI.EarCut.filterPoints(b, b.next); } } // David Eberly's algorithm for finding a bridge between hole and outer polygon PIXI.EarCut.findHoleBridge = function (hole, outerNode) { var p = outerNode, hx = hole.x, hy = hole.y, qx = -Infinity, m; // find a segment intersected by a ray from the hole's leftmost point to the left; // segment's endpoint with lesser x will be potential connection point do { if (hy <= p.y && hy >= p.next.y) { var x = p.x + (hy - p.y) * (p.next.x - p.x) / (p.next.y - p.y); if (x <= hx && x > qx) { qx = x; m = p.x < p.next.x ? p : p.next; } } p = p.next; } while (p !== outerNode); if (!m) return null; if (hole.x === m.x) return m.prev; // hole touches outer segment; pick lower endpoint // look for points inside the triangle of hole point, segment intersection and endpoint; // if there are no points found, we have a valid connection; // otherwise choose the point of the minimum angle with the ray as connection point var stop = m, tanMin = Infinity, tan; p = m.next; while (p !== stop) { if (hx >= p.x && p.x >= m.x && PIXI.EarCut.pointInTriangle(hy < m.y ? hx : qx, hy, m.x, m.y, hy < m.y ? qx : hx, hy, p.x, p.y)) { tan = Math.abs(hy - p.y) / (hx - p.x); // tangential if ((tan < tanMin || (tan === tanMin && p.x > m.x)) && PIXI.EarCut.locallyInside(p, hole)) { m = p; tanMin = tan; } } p = p.next; } return m; } // interlink polygon nodes in z-order PIXI.EarCut.indexCurve = function (start, minX, minY, size) { var p = start; do { if (p.z === null) p.z = PIXI.EarCut.zOrder(p.x, p.y, minX, minY, size); p.prevZ = p.prev; p.nextZ = p.next; p = p.next; } while (p !== start); p.prevZ.nextZ = null; p.prevZ = null; PIXI.EarCut.sortLinked(p); } // Simon Tatham's linked list merge sort algorithm // http://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html PIXI.EarCut.sortLinked = function (list) { var i, p, q, e, tail, numMerges, pSize, qSize, inSize = 1; do { p = list; list = null; tail = null; numMerges = 0; while (p) { numMerges++; q = p; pSize = 0; for (i = 0; i < inSize; i++) { pSize++; q = q.nextZ; if (!q) break; } qSize = inSize; while (pSize > 0 || (qSize > 0 && q)) { if (pSize === 0) { e = q; q = q.nextZ; qSize--; } else if (qSize === 0 || !q) { e = p; p = p.nextZ; pSize--; } else if (p.z <= q.z) { e = p; p = p.nextZ; pSize--; } else { e = q; q = q.nextZ; qSize--; } if (tail) tail.nextZ = e; else list = e; e.prevZ = tail; tail = e; } p = q; } tail.nextZ = null; inSize *= 2; } while (numMerges > 1); return list; } // z-order of a point given coords and size of the data bounding box PIXI.EarCut.zOrder = function (x, y, minX, minY, size) { // coords are transformed into non-negative 15-bit integer range x = 32767 * (x - minX) / size; y = 32767 * (y - minY) / size; x = (x | (x << 8)) & 0x00FF00FF; x = (x | (x << 4)) & 0x0F0F0F0F; x = (x | (x << 2)) & 0x33333333; x = (x | (x << 1)) & 0x55555555; y = (y | (y << 8)) & 0x00FF00FF; y = (y | (y << 4)) & 0x0F0F0F0F; y = (y | (y << 2)) & 0x33333333; y = (y | (y << 1)) & 0x55555555; return x | (y << 1); } // find the leftmost node of a polygon ring PIXI.EarCut.getLeftmost = function (start) { var p = start, leftmost = start; do { if (p.x < leftmost.x) leftmost = p; p = p.next; } while (p !== start); return leftmost; } // check if a point lies within a convex triangle PIXI.EarCut.pointInTriangle = function (ax, ay, bx, by, cx, cy, px, py) { return (cx - px) * (ay - py) - (ax - px) * (cy - py) >= 0 && (ax - px) * (by - py) - (bx - px) * (ay - py) >= 0 && (bx - px) * (cy - py) - (cx - px) * (by - py) >= 0; } // check if a diagonal between two polygon nodes is valid (lies in polygon interior) PIXI.EarCut.isValidDiagonal = function (a, b) { return PIXI.EarCut.equals(a, b) || a.next.i !== b.i && a.prev.i !== b.i && !PIXI.EarCut.intersectsPolygon(a, b) && PIXI.EarCut.locallyInside(a, b) && PIXI.EarCut.locallyInside(b, a) && PIXI.EarCut.middleInside(a, b); } // signed area of a triangle PIXI.EarCut.area = function (p, q, r) { return (q.y - p.y) * (r.x - q.x) - (q.x - p.x) * (r.y - q.y); } // check if two points are equal PIXI.EarCut.equals = function (p1, p2) { return p1.x === p2.x && p1.y === p2.y; } // check if two segments intersect PIXI.EarCut.intersects = function (p1, q1, p2, q2) { return PIXI.EarCut.area(p1, q1, p2) > 0 !== PIXI.EarCut.area(p1, q1, q2) > 0 && PIXI.EarCut.area(p2, q2, p1) > 0 !== PIXI.EarCut.area(p2, q2, q1) > 0; } // check if a polygon diagonal intersects any polygon segments PIXI.EarCut.intersectsPolygon = function (a, b) { var p = a; do { if (p.i !== a.i && p.next.i !== a.i && p.i !== b.i && p.next.i !== b.i && PIXI.EarCut.intersects(p, p.next, a, b)) return true; p = p.next; } while (p !== a); return false; } // check if a polygon diagonal is locally inside the polygon PIXI.EarCut.locallyInside = function (a, b) { return PIXI.EarCut.area(a.prev, a, a.next) < 0 ? PIXI.EarCut.area(a, b, a.next) >= 0 && PIXI.EarCut.area(a, a.prev, b) >= 0 : PIXI.EarCut.area(a, b, a.prev) < 0 || PIXI.EarCut.area(a, a.next, b) < 0; } // check if the middle point of a polygon diagonal is inside the polygon PIXI.EarCut.middleInside = function (a, b) { var p = a, inside = false, px = (a.x + b.x) / 2, py = (a.y + b.y) / 2; do { if (((p.y > py) !== (p.next.y > py)) && (px < (p.next.x - p.x) * (py - p.y) / (p.next.y - p.y) + p.x)) inside = !inside; p = p.next; } while (p !== a); return inside; } // link two polygon vertices with a bridge; if the vertices belong to the same ring, it splits polygon into two; // if one belongs to the outer ring and another to a hole, it merges it into a single ring PIXI.EarCut.splitPolygon = function (a, b) { var a2 = new PIXI.EarCut.Node(a.i, a.x, a.y), b2 = new PIXI.EarCut.Node(b.i, b.x, b.y), an = a.next, bp = b.prev; a.next = b; b.prev = a; a2.next = an; an.prev = a2; b2.next = a2; a2.prev = b2; bp.next = b2; b2.prev = bp; return b2; } // create a node and optionally link it with previous one (in a circular doubly linked list) PIXI.EarCut.insertNode = function (i, x, y, last) { var p = new PIXI.EarCut.Node(i, x, y); if (!last) { p.prev = p; p.next = p; } else { p.next = last.next; p.prev = last; last.next.prev = p; last.next = p; } return p; } PIXI.EarCut.removeNode = function (p) { p.next.prev = p.prev; p.prev.next = p.next; if (p.prevZ) p.prevZ.nextZ = p.nextZ; if (p.nextZ) p.nextZ.prevZ = p.prevZ; } PIXI.EarCut.Node = function (i, x, y) { // vertice index in coordinates array this.i = i; // vertex coordinates this.x = x; this.y = y; // previous and next vertice nodes in a polygon ring this.prev = null; this.next = null; // z-order curve value this.z = null; // previous and next nodes in z-order this.prevZ = null; this.nextZ = null; // indicates whether this is a steiner point this.steiner = false; }